资源类型

期刊论文 169

年份

2023 12

2022 27

2021 18

2020 17

2019 16

2018 5

2017 5

2016 7

2015 4

2014 8

2013 4

2012 4

2011 3

2010 4

2009 7

2008 2

2007 6

2006 2

2005 2

2004 2

展开 ︾

关键词

水泥砂浆 2

玻璃钢 2

研究进展 2

ANSYS 1

FRP 聚合物 1

PBO纤维片材 1

“纺织科学与工程”学科 1

五螺箍 1

井塔冬期快速施工成套技术 1

交流位置伺服系统 1

产业用纺织品 1

人工冻融土 1

优化升级 1

低刚度 1

农业 1

冬期 1

分层 1

制造技术 1

力学性能 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 271-283 doi: 10.1007/s11709-022-0896-z

摘要: Textile reinforced mortar is widely used as an overlay for the repair, rehabilitation, and retrofitting of concrete structures. Recently, textile reinforced concrete has been identified as a suitable lining material for improving the durability of existing concrete structures. In this study, we developed a textile-reinforced mortar mix using river sand and evaluated the different characteristics of the textile-reinforced mortar under various exposure conditions. Studies were carried out in two phases. In the first phase, the pullout strength, temperature resistance, water absorption, and compressive and bending strength values of three different textile-reinforced mortar mixes with a single type of textile reinforcement were investigated. In the second phase, the chemical resistance of the mix that showed the best performance in the abovementioned tests was examined for use as an overlay for a concrete substrate. Investigations were performed on three different thicknesses of the textile reinforced mortar overlaid on concrete specimens that were subjected to acidic and alkaline environments. The flexural responses and degradations of the textile reinforced mortar overlaid specimens were examined by performing bending tests. The experimental findings indicated the feasibility of using textile reinforced mortar as an overlay for durable concrete construction practices.

关键词: textile reinforced mortar     bending tests     acid and alkaline environment     concrete overlay    

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 649-668 doi: 10.1007/s11709-023-0919-4

摘要: Externally bonded (EB) and near-surface mounted (NSM) bonding are two widely adopted and researched strengthening methods for reinforced-concrete structures. EB composite substrates are easy to reach and repair using appropriate surface treatments, whereas NSM techniques can be easily applied to the soffit and concrete member sides. The EB bonded fiber-reinforced polymer (FRP) technique has a significant drawback: combustibility, which calls for external protective agents, and textile reinforced mortar (TRM), a class of EB composites that is non-combustible and provides a similar functionality to any EB FRP-strengthened substrate. This study employs a finite element analysis technique to investigate the failing failure of carbon textile reinforced mortar (CTRM)-strengthened reinforced concrete beams. The principal objective of this numerical study was to develop a finite element model and validate a set of experimental data in existing literature. A set of seven beams was modelled and calibrated to obtain concrete damage plasticity (CDP) parameters. The predicted results, which were in the form of load versus deflection, load versus rebar strain, tensile damage, and compressive damage patterns, were in good agreement with the experimental data. Moreover, a parametric study was conducted to verify the applicability of the numerical model and study various influencing factors such as the concrete strength, internal reinforcement, textile roving spacing, and externally-applied load span. The ultimate load and deflection of the predicted finite element results had a coefficient of variation (COV) of 6.02% and 5.7%, respectively. A strain-based numerical comparison with known methods was then conducted to investigate the debonding mechanism. The developed finite element model can be applied and tailored further to explore similar TRM-strengthened beams undergoing debonding, and the preventive measures can be sought to avoid premature debonding.

关键词: fiber reinforced polymer     textile reinforced mortar     finite element analysis     concrete damage plasticity     calibration and validation     parametric study    

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricatedwith custom-designed mortar and fabrics

《结构与土木工程前沿(英文)》   页码 1100-1116 doi: 10.1007/s11709-023-0967-9

摘要: The performance of a new fiber-reinforced cementitious matrix (FRCM) system developed using custom-designed mortar and fabrics is investigated in this study. The behavior of this system is evaluated in terms of both the flexural and shear strengthening of reinforced concrete beams. Eight beams are designed to assess the effectiveness of the FRCM system in terms of flexural strengthening, and four specimens are designed to investigate their shear behavior. The parameters investigated for flexural strengthening are the number of layers, span/depth ratio, and the strengthening method. Unlike previous studies, custom fabrics with similar axial stiffness are used in all strengthening methods in this study. In the shear-strengthened specimens, the effects of the span/depth ratio and strengthening system type (fiber-reinforced polymer (FRP) or FRCM) are investigated. The proposed FRCM system exhibits desirable flexural and shear strengthening for enhancing the load capacity, provides sufficient bonding with the substrate, and prevents premature failure modes. Considering the similar axial stiffness of fabrics used in both FRCM and FRP systems and the higher load capacity of specimens strengthened by the former, cement-based mortar performs better than epoxy.

关键词: fiber-reinforced cementitious matrix     flexural strengthening     shear strengthening     carbon fiber-reinforced polymer     shear span    

Confinement properties of circular concrete columns wrapped with prefabricated textile-reinforced fine

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0955-0

摘要: This paper proposes an innovative column composed of a core column (including both reinforced concrete (RC) and plain concrete (PC) columns) and a prefabricated textile-reinforced fine concrete (TRC) shell. To study the confinement properties of TRC shells on this novel type of concrete column, 20 circular specimens, including 12 PC columns and 8 RC columns, were prepared for axial compressive tests. Four key parameters, including the column size, reinforcing ratio of the carbon textile, concrete strength, and stirrup spacing, were evaluated. The results indicated that the compressive properties of the columns were improved by increasing the reinforcing ratio of the textile layers. In the case of TRC-confined PC columns, the maximum improvement in the peak load was 56.3%, and for TRC-confined RC columns, the maximum improvement was 60.2%. Based on the test results, an analytical model that can be used to calculate the stress–strain curves of prefabricated TRC shell-confined concrete columns has been proposed. The calculated curves predicted by the proposed model agreed well with the test results.

关键词: textile-reinforced fine concrete     prefabricated shell     confined concrete column     confinement properties     stress–strain relationship    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

2017年度环境与轻纺工程前沿

环境与轻纺工程项目组

《全球工程前沿》 2017年 第1卷 第1期   页码 152-178

Adsorption in combination with ozonation for the treatment of textile waste water: a critical review

Shraddha Khamparia,Dipika Kaur Jaspal

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0899-5

摘要: A combination of adsorption with ozonation proved best for dye removal. Toxicity of the textile effluents can be remarkably reduced by combined method. Wide scope for choice of natural materials for treatment of textile dyes. Intrusion of synthetic textile dyes in the ecosystem has been recognized as a serious issue worldwide. The effluents generated from textiles contain large amount of recalcitrant unfixed dyes which are regarded as emerging contaminants in the field of waste water study. Removal of various toxic dyes often includes diverse and complex set of physico-chemical, biological and advanced oxidation processes adopted for treatment. Adsorption in itself is a well-known technique utilized for treatment of textile effluents using a variety of adsorbents. In addition, ozonation deals with effective removal of dyes using high oxidising power of ozone. The review summarizes dye removal study by a combination of ozonation and adsorption methods. Also, to acquire an effective interpretation of this combined approach of treating wastewater, a thorough study has been made which is deliberated here. Results asserts that, with the combined ability of ozone and a catalyst/adsorbent, there is high possibility of total elimination of dyes from waste water. Several synthetically prepared materials have been used along with few natural materials during the combined treatment. However, considering practical applicability, some areas were identified during the study where work needs to be done for effective implementation of the combined treatment.

关键词: Adsorption     Ozonation     Catalytic Ozonation     Textile dyes     Mineralization    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

2018年度环境与轻纺工程前沿

环境与轻纺工程项目组

《全球工程前沿》 2018年 第2卷 第1期   页码 140-163

2023年度环境与轻纺工程前沿

环境与轻纺工程项目组

《全球工程前沿》 2023年 第7卷 第1期   页码 156-180

Screening of textile finishing agents available on the Chinese market: An important source of per- and

Mehvish Mumtaz, Yixiang Bao, Wenchao Li, Lingxiao Kong, Jun Huang, Gang Yu

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1145-0

摘要: Kendrick mass defect was used for PFASs screening in textile finishing agents (TFAs). Total oxidizable precursor assay provides insight into unknown precursors. Perfluorooctane sulfonate was found as impurity in short ECF technology based TFAs. Perfluorooctanoate was also detected in C6 telomerization based TFAs. Long chain precursors were also observed in both types of TFAs. Organofluorinated surfactants are widely employed in textile finishing agents (TFAs) to achieve oil, water, and stain repellency. This has been regarded as an important emission source of per-and polyfluoroalkyl substances (PFASs) to the environment. China is the biggest manufacturer of clothes, and thus TFA production is also a relevant industrial activity. Nevertheless, to date, no survey has been conducted on PFAS contents in commercially available TFAs. In the present study, TFA products were investigated by the Kendrick mass defect method. The quantification results demonstrated a significant presence of perfluorooctane sulfonate (0.37 mg/L) in TFAs manufactured by electrochemical fluorination technology. The products obtained by short-chain PFAS-based telomerization were dominated by perfluorooctanoic acid (mean concentration: 0.29 mg/L), whose values exceeded the limits stated in the European Chemical Agency guidelines (0.025 mg/L). Moreover, the total oxidizable precursor assay indicated high levels of indirectly quantified precursors with long alkyl chains (C7–C9). Together, these results suggest that there is currently a certain of environmental and health risks in China that originates from the utilization of TFAs, and a better manufacturing processes are required to reduce such risks.

关键词: Textile finishing agents     Kendrick mass defect     Total oxidizable precursor assay    

让人们穿得更好——21世纪纺织科学与工程学科的前沿概述

姚穆

《中国工程科学》 2003年 第5卷 第4期   页码 47-49

摘要:

“纺织科学与工程”学科多年来有了很大发展,中国人民告别了缺吃少穿的历史。纺织品和服装在我国的国民经济中占相当重要的地位,出口创汇和顺差占显著的位置。为了迎接新世纪的挑战,21世纪的纺织科学与工程学科的前沿将主要围绕着发展开发新品种,实现新功能;引进高新科学技术,加速改造纺织科学与工程学科;新型纺织染整加工新技术与设备的发展;纺织生产、经营、销售、交付、运输、资金等新的管理运转模式的转变等四个方面。21世纪将是产业用纺织品飞速发展的时代。

关键词: “纺织科学与工程”学科     智能服装     产业用纺织品     纺织纤维     纺、织、染整    

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 158-168 doi: 10.1007/s11709-016-0374-6

摘要: A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

关键词: mortar-aggregate interface     push-out test     elevated temperatures     modeled concrete (MC)     modeled recycled aggregate concrete (MRAC)    

2020年度环境与轻纺工程前沿

环境与轻纺工程项目组

《全球工程前沿》 2020年 第4卷 第1期   页码 126-148

2022年度环境与轻纺工程前沿

环境与轻纺工程项目组

《全球工程前沿》 2022年 第6卷 第1期   页码 150-173

标题 作者 时间 类型 操作

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

期刊论文

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

期刊论文

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricatedwith custom-designed mortar and fabrics

期刊论文

Confinement properties of circular concrete columns wrapped with prefabricated textile-reinforced fine

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

2017年度环境与轻纺工程前沿

环境与轻纺工程项目组

期刊论文

Adsorption in combination with ozonation for the treatment of textile waste water: a critical review

Shraddha Khamparia,Dipika Kaur Jaspal

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

2018年度环境与轻纺工程前沿

环境与轻纺工程项目组

期刊论文

2023年度环境与轻纺工程前沿

环境与轻纺工程项目组

期刊论文

Screening of textile finishing agents available on the Chinese market: An important source of per- and

Mehvish Mumtaz, Yixiang Bao, Wenchao Li, Lingxiao Kong, Jun Huang, Gang Yu

期刊论文

让人们穿得更好——21世纪纺织科学与工程学科的前沿概述

姚穆

期刊论文

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

期刊论文

2020年度环境与轻纺工程前沿

环境与轻纺工程项目组

期刊论文

2022年度环境与轻纺工程前沿

环境与轻纺工程项目组

期刊论文